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Aims and goals 
It is clear that algorithms do not drive metabolomics investigation, but rather the question one 
seeks to answer with metabolomics dictates the data analysis strategy.  The goal of this group 
is to define the reporting requirements associated with statistical and chemometric analysis of 
metabolite data.  This will include identifying the type of algorithm that will be required, and 
where a model is built, its construction and its validation.  These points must be reported so 
that the data analysis is as objective and unbiased as possible. 
 
Scene setting 
The figure opposite identifies the clear flow of information 
(pipeline) in a typical metabolomics experiment.  Whilst 
multivariate analysis (MVA; also referred to as 
chemometrics and machine learning) features at the end of 
the flow, in order for the analysis to be valid there must be 
robust experimental design.  For MVA this particularly 
refers to the sample type the numbers needed and 
obviously using the correct control and test groups.  Although experimental data capture and 
data storage and retrieval are also important, these are dealt with by other working groups. 

Robust experimental design

Robust and reproducible data

Well curated databases 

Validated data analysis

 
Design of experiments (DOEs) require that the biological space is adequately populated prior 
to data capture and subsequent analysis.  This is clearly determined by the experiment in 
question but, for example, if one was interested in the childhood disease leukaemia the control 
set of healthy individuals must not include adults.  Most MVA algorithms are only capable of 
interpolation, that is to say they give answers within their knowledge realm and can not 
extrapolate beyond this.  Therefore to account for this the DOE would span the metadata that 
were collected in terms of e.g. sex, age, height, BMI (body mass index) etc, and include 
suitable sample numbers to account for inherent biological variability.  There are approaches 
to accomplish the former based on space filling algorithms including full or fractional 
factorial design, Plackett-Burman, Taguchi arrays, to name the most popular ones.  The latter 
requires some preliminary metabolite data collection of the same samples, nominally under 
identical conditions, where the variation in metabolite data can be assessed in terms of 
biological reproducibility.  Power laws, ANOVA (analysis of variance) and MANOVA 
(multivariate ANOVA) can then be used to decide on the minimum number of samples 
required. 
 

Reporting structure:  



The number of samples per class should be reported along with the relevant metadata 
capture, and how accurately these are spanned in the calibration, validation and test 
sets (vide infra for definitions of these data sets).  

 
Pre-processing 
Before any analysis is performed metabolite data must be scaled / normalised.  There are 
many approaches that can be used and the most poplar include scaling to total response, 
scaling to individual metabolite (or peak), log transformation, scaling to unit variance 
(autoscale), Pareto scaling, derivatisation, mean centring, vector normalisation.  The way in 
which the data were scaled prior to analysis must be explained.  In most instances this will 
have been optimised, and if this is the case then this must be performed objectively as 
described under validation below. 
 

Reporting structure:  
The way in which the data are scaled prior to analysis must be explicitly detailed. 

 
Algorithm selection 
The sort of question that one wants to answer drives the selection of the most relevant 
algorithm (or set of algorithms).  It is not feasible to discuss the pros and cons of each method 
as this is often subjective, but we can define a reporting structure based on the biological 
application. 
 
Multivariate data consist of the results of observations of many different metabolites 
(variables) for a number of individuals (objects).  Each variable may be regarded as 
constituting a different dimension, such that if there are n variables (metabolites) each object 
may be said to reside at a unique position in an abstract entity referred to as n-dimensional 
hyperspace.  This hyperspace is necessarily difficult to visualise, and the underlying theme of 
multivariate analysis (MVA) is thus simplification or dimensionality reduction.  This 
dimensionality reduction occurs in one of two ways; either using an unsupervised or 
supervised learning algorithms (see the figure below for a summary of the main methods). 
 



Unsupervised [use X data only]
• Hierarchical clustering
• Principal components analysis
• Independent components analysis
• Kohonen neural networks

Supervised [use X & Y data]
• Artificial neural networks

– MLPs, RBFs, SVMs
• Discriminant analysis

– LDA, PLS-DA, CVA, DFA
• Regression analysis

– MLR, PCR, PLS
• Evolutionary-based algorithms

– GA, GP (GC), EA, EP
• Regression trees

– CART, MARS, Random Forests
• Inductive logic programming
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Abbreviations: multilayer perceptrons (MLPs), radial basis 
functions (RBFs), support vector machine (SVMs), LDA 
(linear discriminant analysis, PLS (partial least squares), 
CVA (canonical variates analysis), DFA (discriminant
function analysis), MLR (multiple linear regression), PCR 
(principal components regression), GA (genetic algorithm), 
genetic programming/computing (GP/GC), evolutionary 
algorithm (EA), evolutionary programming (EP), 
classification and regression tree (CART), multivariate 
adaptive regression splines (MARS).  

 
Unsupervised learning 
When learning is unsupervised, the algorithm is shown a set of inputs and then left to cluster 
the metabolite data into groups.  For MVA this optimization procedure is usually 
simplification or dimensionality reduction.  This means that a large body of metabolite data 
(x-data) are summarised by means of a few parameters with minimal loss of information.  
Typically principal components (PCA) and hierarchical cluster analyses (HCA) are used, and 
after clustering the ordination plots or dendrograms then have to be interpreted. 
 

Reporting structure: 
As PCA and HCA are unbiased analysis and describe the natural variation in the input 
x-data what needs to be reported is the percent explained variance generated for each 
principal component plotted and the specific way in which HCA has been generated.  
This includes construction of the similarity matrix and whether an agglomerative or 
divisive clustering algorithm is used. 

 
Supervised learning 
When one knows the desired responses (y-data, or traits or classes) associated with each of the 
metabolite data inputs (x-data) then the system may be supervised.  The goal is to find a 
mathematical transformation (model) that will correctly associate all or some of the inputs 
with the target traits.  This trait can be categorical (e.g., disease vs. healthy) or quantitative 
(e.g., grade of cancer, response to therapy).  In its conventional form this is achieved by 
minimising the error between the known target and the model's response (output).  In addition 



there exist special types of supervised learning that effect explanatory analyses; that is to say 
the mathematical transformation from input to output data is transparent.  Such inductive 
methods allow one to discover which metabolites (inputs) are key for the separation of the 
traits to be predicted.  These approaches may help in the validation of the model in terms of 
its biological relevance that can be tested by a complementary approach using transcriptomics 
and proteomics. 
 
Validation: As these supervised learning methods use both input x-data and output y-data in 
model formation the analysis must be fully validated.  All these methods require optimisation.  
For regression based approaches (MLR, PCR, PLS) and discriminant analysis (LDA, CVA 
and DFA) the number of latent variables that are used in the model must be optimised.  For 
neural networks the optimisation will be in terms of the number of iterations (epochs) in 
model formation, and for evolutionary-based algorithms the number of population cycles.  
Whilst for pre-processing, the effect on model performance must also be assessed objectively. 
 
Leave-one or leave-n out for model calibration is where a single or n sample(s) are iteratively 
left out, the model is then reconstructed, the omitted sample projected into model space, and 
its location used to assess the predictive ability of the model.  However, this process is biased 
towards the training data and so may lead to model over-fitting since these are the only data 
that the model has seen, and no independent data has been tested.  A more robust approach is 
to use three data sets (these are defined as following as these terms sometimes vary between 
laboratories): 

Training set: refers to the x-data and y-data pairs used to construct a model.  
Validation set: refers to the x-data and y-data pairs used to validate model construction.  
This is used during training where the y-data predicted and y-data known are compared. 
Test set: refers to the x-data used to test the model.  These x-data are only used after the 
model has been constructed with the training and validation data sets. 

 
The use of three data sets as detailed above allows the independent assessment of the model 
that has been constructed using new hitherto unseen metabolite data.   
 
When supervised analyses are used, or pre-processing optimisation employed, the above 
validation approach must be conducted and be included in the report. 
 

Reporting structure:  
The exact details of how the metabolite data were objectively split into training, 
validation and test sets must be given. 
Metric used for choosing the number of latent variables, number of iterations or 
populations must be given based on the above three data sets. 

 
Software 
One for discussion – I have not included any at this stage as we need to be fully inclusive and 
the analysis strategy is more important than software X vs. software Y. 
 
References 
Beavis, R.C., Colby, S.M., Goodacre, R., Harrington, P.B., Reilly, J.P., Sokolow, S. and 
Wilkerson, C.W. (2000) Artificial intelligence and expert systems in mass spectrometry in 
Meyers, R.A. (Ed), Encyclopedia of Analytical Chemistry. pp. 11558-11597. 

Beebe, K.R., Pell, R.J. and Seasholtz, M.B. (1998) Chemometrics: a practical guide. Wiley, 
New York. 



Brown, M. Dunn, W.B., Ellis, D.I., Goodacre, R., Handl, J., Knowles, J.D., O’Hagan, S., 
Spasić, I. & Kell, D.B. (2005) A metabolome pipeline: from concept to data to knowledge. 
Metabolomics 1, 39-51. 

Chatfield, C. and Collins, A.J. (1980) Introduction to Multivariate Analysis. Chapman & Hall, 
London. 

Duda, R.O., Hart, P.E. and Stork, D.E. (2001) Pattern classification, 2nd ed. John Wiley, 
London. 

Everitt, B.S. (1993) Cluster Analysis. Edward Arnold, London. 

Goodacre, R., Vaidyanathan, S., Dunn, W.B., Harrigan, G.G. and Kell, D.B. (2004) 
Metabolomics by numbers - acquiring and understanding global metabolite data. Trends in 
Biotechnology 22, 245-252. 

Hall, R.D. (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New 
Phytologist 169, 453-468. 

Kell, D.B. and Oliver, S.G. (2004) Here is the evidence, now what is the hypothesis? The 
complementary roles of inductive and hypothesis-driven science in the post-genomic era. 
Bioessays 26, 99-105. 

Krzanowski, W.J. (1988) Principles of Multivariate Analysis: A User's Perspective. Oxford 
Univeristy Press, Oxford. 

Manly, B.F.J. (1994) Multivariate Statistical Methods : A Primer. Chapman & Hall, London. 

Martens, H. and Næs, T. (1989) Multivariate Calibration. John Wiley, Chichester. 

Weckwerth, W. and Morgenthal, K. (2005) Metabolomics:from pattern recognition to 
biological interpretation. Drug Discovery Today 10, 1551-1558. 

 
ENDS 


